M2-computable real numbers
نویسندگان
چکیده
منابع مشابه
Burchard von Braunmühl, Computable Real Functions of Bounded Variation and Semi-computable Real Numbers
In this paper we discuss some basic properties of computable real functions of bounded variation (CBV-functions for short). Especially, it is shown that the image set of semi-computable real numbers under CBV-functions is a proper subset of the class of weakly computable real numbers; Two applications of CBV-functions to semi-computable real numbers produce the whole closure of semi-computable ...
متن کاملComputable Functions of Bounded Variation and Semi-Computable Real Numbers
In this paper we discuss some basic properties of computable real functions which have bounded variations (CBV-functions for short). Especially, it is shown that the image set of semi-computable real numbers under CBV-functions is a proper subset of weakly computable real number class; Two applications of CBV-functions to semi-computable real numbers produce the whole closure of semi-computable...
متن کاملThe closure properties on real numbers under limits and computable operators
In e'ective analysis, various classes of real numbers are discussed. For example, the classes of computable, semi-computable, weakly computable, recursively approximable real numbers, etc. All these classes correspond to some kind of (weak) computability of the real numbers. In this paper we discuss mathematical closure properties of these classes under the limit, e'ective limit and computable ...
متن کاملWeakly Computable Real Numbers
A real number x is recursively approximable if it is a limit of a computable sequence of rational numbers. If, moreover, the sequence is increasing (decreasing or simply monotonic), then x is called left computable (right computable or semicomputable). x is called weakly computable if it is a difference of two left computable real numbers. We show that a real number is weakly computable if and ...
متن کاملComputable Real Functions : Type 1
Based on the Turing machine model there are essentially two diierent notions of computable functions over the real numbers. The eeective functions are deened only on computable real numbers and are Type 1 computable with respect to a numbering of the computable real numbers. The eeectively continuous functions may be deened on arbitrary real nunbers. They are exactly those functions which are T...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- J. Log. Comput.
دوره 22 شماره
صفحات -
تاریخ انتشار 2012